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Abstract

Th is document describes the sensory processing system for the NASA/NBS Standard Refer-
ence Model (NASREM) for telerobtic control. Th is control system architecture has ken
adopted by NASA for the Flight Telcrobotic Servicer. The control system i s hierarchically
designed and consists of parallel systems: Task Decomposition, World Modeling and
Sensory Processing. The paper will concentrate on the Sensory Processing System, and in
particular will describe the i m a ~ eprocessing hardware and software used to extract features
at low levels of sensory processing for tasks representative of those envisioned for the
Space Station such as assembly and maintainencc.

1. Introduction

The NASA/NBS Standard Reference Model WASREM) architecture for the control sys-
tem of the Flight Telerobotic Serviccr defines an architecture for telmbotics based on con-
cepts developed in other mearch programs. I t incorporates artificial intelligence theories
such as goal decomposition, hierarchical planning, model driven image analysis, blackboard
systems and expert systems [l].The multiple processes of the system an hierarchically
suucturcd. Each process i s considered to be arranged vereically in a hierarchy which decom-
poses complex tasks into progressively simpler objectives. In addition to the vertical struc-
ture, the system is also partitioned horizontally into three sections: Task Decomposition,
World Modeling, and Sensory Processing (Figure1).

The Task Decomposition System is nsponsible for monitoring tasks, planning, and con-
trol servoing of the robot’s manipulators, grippers, and sensors. The complexity of each func-
tion i s determined by its position in the hierarchy [4, 111. The World Model i s responsible
for maintaining the best estimate of the current state of the system and of the world at any
given point in time. I t is responsible for maintaining models of objects and structures, maps
of m a s and volumes, lists of objects describing features and attributes, and tables of state



variables describing the system and the environment. The Sensory Processing System i s
responsible for gathering sensory information from multiple instances of various Sensors [8],
enhancing that information [9], recognizing features, objects, and nlationships between
objects, and determining the cornlation between observations and expectations.

Section 2 of this papa details the lower layers of the Sensory Processing System hierar-
chy. In Section 3, a parallel hardware system that i s particularly well -suited for performing
low level processing tasks i s described. Section 4 explains a number of techniques employing
localoperations that are used to enhance data and extract features and that have been imple-
mented on parallel hardware.

2. Sensory Processing in the NASREM Architecture

The Sensory Rocessing System (SPS) in the NASREM architecture [l]i s designed so
that data flows bidirectionally between the levels of the Sensory System and bidirectionally
between the Sensory System and the World Model (Figure 1). T h e SPS i s designed to oper-
ate in both a bottom-up (data driven) and a topdown (model driven) mode. The World
Model contains both upriori infoxmation and updated information required to perform sensory
processing tasks. At each level of the Sensory Processing hierarchy, information will be sent
to the World Model. Th is information will be made available to the Task Decomposition
module at the level inwhich it i s needed.

The system i s divided into four levels: Data Aquisition, Low Level Proccssing, Interme -
diate k v e l Processing and High Level Rocessing. This organization parallels that
described in [2]. The Data Aquisition h e 1 serves as an interface between the environ-
ment and the Sensory Processing System. I t gathm raw i u f m t i o n (readings) from each
of the sensors. Depending on the complexity of the data, this information may be stored
directly into the Servo k v e l of the World Model or used for further processing at the next
level [a]. The Low Level h s s o r performs point-by-point operations to enhance the raw
data and to perfom local future extraction. Its output i s passed to the World Model at the
prim Level and/or to the Intermuiiatt Level Processor. The Intermediate Level Processor i s
responsible for providing symbolic descriptions of mgions, lines and surfaces that have been
extracted from b w Level Processing. Th is data i s passed both to the World Model and to
the next SPS level. Lastly, the High Level Roctssor i s responsible for intcrpnting and
labeling the "intermediate symbolic npnsentation " [2] and for updating the contents of the
World Model with the mos t current knowledge about the position and orientation of objects.

3. Tbe Parallel Image Processing Engine

T h e infonnation processed by the Low Level Processor i s in the form of arrays of data
received from cameras, ranging sensors, or tactile array processors [9]. A typical image can
consist of between 16K (128 x 128) bytes and 1M (1024 x 1024) bytes of information.
Because of the large mount of data to be processed and the need to process that data as
quickly as possible, m o s t serial computers cannot meet the requirements of low level pro-
cessing. Parallel computers have been developed in recent years to specifically fulfill the
need of real-time processing of image data [a, 71, and although the machines differ in archi-
tcchual design and implementation, they share the capability of being able to process an
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entire image or region of an image in real-time. Parallel processing is especially applicable
to low level image processing. The data stmcturc used at th is level i s the image itself, a
spatially indexed image of points which comspond to gray scale intensity values. All parts
of the image arc treated in the same way, and in general, no effort i s made to distinguish
bttwtcn different parts of it. Local operations depend only on corresponding elements
between images or on combinations of adjacent elements of an image (Figure2). Computa-
tions tend to be simple arithmetic, algebraic, or logical operations, and typically a low number
of computations per pixel i s required 151. Parallel processors are also suited to multi-rcsolu-
tion representations and processing techniques.

Point by Point Operation
x2 = f(q)

Figure 2. Lrrcal Operations

Many local data enhancement techniques can be implemented on the Pipelined Image
Processing Engine (PIPE) developed at the National Bureau of Standards and manufactured
by Aspcx, Inc. Some features of PIPE arc discussed hen, but the rrader is referred to [a, 71
for a more detailed description of the system. PIPE acquires its images in real-time from
analog sources such as cameras, video tapes, and ranging devices, as well as digital data
sources. Its output can k directed to video monitors, symbolic mapping devices, and higher
level processing systems. AU inputs and outputs arc synchronous with the video ratc of six-
ty fields per second.

The PIPE system i s composed of up to eight identical modular processing stages, each of
which contains two image buffas, look-up tables, three arithmeric logic units, and two neigh-
borhood operators (Figure3).
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LUT =Look-Up Table
F =ForwardLUT
R =RccursiveLUT
B =BackwardsLUT

BUFA = Image Buffer A
BUFB = Image Buffer B
NOP = Neighborhood Operat or
TVF = Two Valued Function LUT
QmOo = Video Buses

= Image Paths

ALU= Arithmetic Logicunit

Figure 3. PIPE Modular Processing Stage

A forward path from one stage to the next allows pipelined and sequential processing. A
recursive path fiom a stage output back to its input allows feedback and relaxation process -
ing. A backward path from one stage to the previous stage allows for temporal operations
(Figure4) .. The images in the thnc paths can be combined in arbitamy ways on each cycle
of a PIPEprogram, and the chosen configuration can change on different cycles.

Stage n Stage n+l

4I-D Forward Path

Recursive Path

Bachvard Pathe-3
Figure 4. Data Flow Path Between PIPE Stages

In addition, six video buses allow images to be sent from any stage to any one or more
stages.

Images can be processed in any combination of four ways on PIPE point processing, spa-
tial neighborhood processing, sequence proccssing or Boolean processing (Figure5). Differ-
ent processing can occur at individual pixels in the image by using a regionsf -intmst opera-



tor. All methods can be consided localoperations.

Figure 5. Processing on PIPE (A) Point (B) Spatial (C)Boolean @) Sequential

Point processing can be a function of either one or two input images and includes simple
arithmetic and logical operations such as scaling, ksholding, converting number systems,
etc. Look-up tables resident on each PIPE stage allow the user to perform more mmplex
arithmetic operations, trigonomcaic operations, comparisons, rotations, etc.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in parallel.
Both neighborhood operators operate on the same image input, but can perform different
neighborhood operations. Larger neighborhood convolutions can be achieved by decompos-
ing an o d d - s i d neighborhood mask into a sequence of 3 x 3 convolutions. The neighbor-
hood optrators can be either arithmetic or Boolean and performed identically on all loca-
tions in the image unless a regionsf -interest is specified. Special features arc provided to
prevent inaccurate computations on the image borders.

Multi-resolution pyramids can be consmcted by selecting the "squeeze" or "expand
options as an image i s stored or written firom a buffer. In the former case, each 2 x 2 neigh-
borhood of the input image i s sampled and written to the output image resulting in an image
half the resolution of the original. T h i s process can be repeated to generate successively
smaller resolution images. Expanding M image involves the opposite operation by pixel
replication and generates successively larger resolution images.

Sequential processing works on a set of multiple images, e.g. sequences of images over
time, a stereo pair of right and left images, or multi-resolution images. By taking advantage
of the inter-stage paths, images can be combined, compand, rampled or differenced to
extract the dcsirtd application dependent infarmation.

When performing Boolean processing, each pixel. of information i s considend to be com-
posed of eight independent bit planes which arc operated upon simultaneously. The neigh-
borhood operators can be applied in a Boolean mode, whert the output i s the combination of



the 3 x 3 neighborhod usinglocaloperations on each of the eight bit planes.

PIPE programs q-c written on 8 host computer using l softwan package which is an icon-
ic representation of the hardware to generate microcode. T h e microcode instructions are
downloaded to PIPE, where they ut resident during program execution. A software devel-
opment tool,ASPIPE, allows the USCT to code the spatial and temporal flow of the data

gmns Can k edited, saved, compiled, executed, and debugged in this environment. In addi-
tion, ASPIPE generates a sequencer fi le that specifies which m i m p t i o n i s executing at
each timecycle. T h i s sequencer &so Conmls branching and looping among microcode
instructions during execution.

through the hmdwm and to r l l o~a tcthe look-up tables and PIPE ~ ~ S O U ~ C C Sto be used. Ro-

A hardware intufacc between PIPE andIhigh level processor (HLP) has been devel-
oped and software has been written to support this interface. In th is manner, the results of
low level vision tasks arc h a n s f d toIserial computer which can perfom high level vision
tasks of image analysis, recognition, and general decision making which require global infor-
mation. Since the interface is bidimtional, the HLP can download images c r look-up tables
dirrctly to MY buffer or table on m y selectedpiece of PIPE hardware. In ddition, the HLP
canselectPIPE algorithms by manipulating the PIPE sequencer.

4. Low Level Image Processing Algorithms

Figure 6 i s a p i m of a m s s node suggested for use in assembly of the NASA Space
Station. The sockets are attached to the node in various configurations, but the world m&el
has knowledge of the gcorncuy of each instance of any assembly. The appearance of the
truss node presents a difficult problem for computer vision: the part i s machined of a smooth,
highly reflective metal, and the curvature of the node increases the difficulty of obtaining sat-
isfactory infomation with standard image processing techniques.

t
k

Figure 6. Truss Node Assrmbly



Binary thresholding of the image fai ls because of the sptcularity of the node. Connected com-
ponent algorithms which segment an image into distinct objects and compute statistical infor-
mation relative to each object fail &use the node i s improperly segmented due to highlight
and shadow effects. Edge extraction routines provide extraneous idonnation because high-
lights arc falsely interpreted as edges. Figure 7 illustrates the "edges" found in the m s s
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Figure 7. Truss Node Edge Image
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To overcome these obstacles, an dgorithm was developed on PIPE which makes use of
standard edge extraction techniques, image smoothing, and multi-molution messing. The
goal of this algorithm i s to provide a gonnected edge image of the truss node assembly which
can be used as input to a COM CC~C~component algorithm.
The first operation applied in this dgorithm involves extracting edges in the full rrsolution
image. A Sobel o p t o r [lo] is applied to the image using PIPE'S neighborhood operator to

-1

extract the x a

0 1

I y gradients at each pixel in the image (Figure8).
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Figure 8. Sobel optrator



The magnitude and direction of each edge point are then computed using two-valued function
look-up tables. By kshold ing the direction image with the magnitude image to remove
weak edges, a three pixel wide, binary edge is obtained . In order to thin the edge image, a
non-maxima suppression algorithm i s applied. T h i s operation involves quantizing the dircc-
tions of all edge points into one of eight values (Figure 9). The output of th is quantization

Value Direction Ranee

0 0 -> 45
1 45 -> 90
2 90-> 135
3 135 -> 180
4 180 -> 225
5 225 -> 270
6 270 -> 315
7 315 -> 360

Figure 9. Quantization of Direction h g e

i s stored in' a buffer which i s used to determine in which direction to thin the corresponding
pixel in the edge image. In th is manner, different 3 x 3 masks can be applied to the image
depending on the direction of the edge, and all edge points that are not maximum in the gradi-
ent direction an eliminated (Figure7).

In order to remave the extraneous information in the thinned edge image;multi -nsolution
processing i s used. The image i s first smoothed using a Gaussian operator [lo], and then it
i s sampled such that each 2 x 2 neighborhood of the original image is averaged to produce
one pixel at the next higher level of resolution (Figure 10). The reverse operation is then
applied to the smoothed sunpled image; i t i s expanded back to a 256 x 256 image using pixel
replication.

Ltvcl n
L,cvcl n+l

Figure 10. Forming Levels of a Multi-Resolution Pyramid
The result of these operations i s shown in Figure 11. The false edges caused by the specu-



laxity have been removed and 111 part ions of the mass ssscmbly m connected. Reapplying
the Sobel opcxator to Figure 11 results inIconnected edge image (Figure12). and applying

rithm results in a connected, thinned edge image (Figure 13).

Figure11. Result of Multi-Resolution Processing

Figure 12 SobelEdge Image



Figure w. Thinned Edge Image

Using the hardware interface between PIPE and the HLP, the thinned edge image i s
@ansferred to the HLP for additional processing to obtain global information. In particular,
the area of the node, its centroid, and its orientation are computed using the (p+q)th order
moments defined in [12]:

5= JIxp yq f(x,y) dx dy

where f(x,y) = 1 for all edge points and f(x,y) = 0 for all noncdge points. The centroid of M

object i s defined as :

Xc'mlO/%* r,=mo1/mOo

where i s the area of the object, and tbe orientation i s defined as:

The locations of comers of an object provide useful infoxmation in that they support the
calculation of the orientation of M object. Given the model of M object, the viewing position
cank determined by knowing which comers arc visible.

Corners can k defmd as locations whm adjacent edge segments have high rates of
curvature. These rates of m a t u r e can be measd over small distances, yielding localcor-
ners. As the distance b m s huger, mort global comers arc found. To detect global cor-
ners. i t i s useful to use a lower resolution image, since a large area in the high resolution
image maps to a rtiatively smaller area in the low resolution image (see Figure lo). A cor-
ner detection algorithm was implemented on the PIPE using these concepts.



Initially, an image of the truss node (see Figure 6) was used to generate successively lower
resolution versions of tfie same image. The image was sampled so that only every other pix-
el on every other IOW was used to produce an image at the next resolution. From a 256 x
256 image, images were ntatcd of sizes 128 x 128,64 x 64,32 x 32, and 16 x 16. Using the
low resolution image, a Sobel edge operator was applied to compute edge magnitude. Figure
14 i s a picture of the edge image at th i s low resolution thresholded to indicate where edges
resulted from high changes in contrast. Next, four Boolean neighborhood operations were
computed on th is binary aige image to test for the presence of tight types of corners (set
Figure IS). The responses from the comer masks wcrc combined and then expanded back to
full resolution using pixel replication. me results IVC shown superimposed on the grey scale
image of the m s s node, where the m m w m detected on the 16 x 16 level (see Figure
16) and on the 32 x 32 level (see Figure 17). As is expected, thm arc more rtsponses
obtained at the 32 x 32levelof resolution than at the 16 x 16 lcvel. T h i s i s caused by the fact
that the localoperatars arc applied over a smaller distance, thereby detecting monlocalcor-

The quality and .ccuracy of the corners detected depend largely on the level of resolution
at which they were extracted. The margin of Mor of the corner position is produced as a
result of the way in which images arc d u c e d and expanded on the PIPE. As an image
buffer is d u c e d in resolution, pixels are sampledin every other row and in evay other col-
umn. ?he result i s always placed in the same corner of a 2 x 2 neighbarhood. Expansion of
an image involves the replication of pixels in a 2 x 2 neighborhood. Thus a corner point in the
16 x 16 image represents 16 pixels in the 256 x 256 image, any one of which can be a m e
merpoint.

m.

t

Figure 14. IA W Resolution Image of Truss Node



Upper Left Upper Rightrn b w e r Right

? x 0

3 x . x

? ? ? Xlilql?l
0 = no edge
x = edge
3I:don't can

Lower k f t

pJ
X

Figure 15. &mer Detection Masks

Figure 16. Caners Detcctd on 16 x 16 Level



5. Conclusion

A Flight Telembtic Servictr will be used to assist the usaonaut in the construction and
maintainance of the NASA Space Station. NASREM, the hierarchical control system devel-
oped at the National Bureau of Standards (NBS), has been chosen by NASA as the comput-
ing architecture for th is project. The sensory processing portion of this control scheme
involves, at the low levcl, the preprocessing and enhancement of large mays of data that
have been gathered from external sensors. Feature extraction from these m y s i s often
more accurate if the data i s preprocessed to ltmove the effects of noise and variable environ-
mental conditions such as lighting.

Using a m s s node, a suucnpc which will be used in the Space Station, the PIPE was
rble to produce meaningful information which willk used by other processes in the control
scheme. By using a combination of edge extraction techniques, image smoothing, and multi-
resolution processing, image processing problems presented by the spaularity of the truss
node were overcome. A PIPE program i s able to produce a thinned, connected edge image
approximately every l/lOthof 8 second. A second PIPE program has been used to extract
comers or areas of high c w a m at update rates of 1/4th of a second. These results enable
higher sensory lev& to compute theposition and orientation of the node in space.

More effort i s required to bind a x n e r ~detected at low kvels of resolution with their true
position in the full resolution image. T h i s amn localization can be accomplished by adjust-
ing the comer positions on each level of rtsolution during expansion instead of only at the
lowest level. In addition, both algorithms can k enhanced by the removal of spurious edge
points in the image.
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